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1, - FORMULATION OF TEE PROBm 

Aesume tha t  a body, subject t o  aerodynamia heating, begins t o  

melt. The forming l i q u i d  film on the melting surface moves under the 
e f f e c t  of pressure gradient and surface f r io t ion ,  The equations Of 
motion of the l i qu id  film a r e  equivalent t o  the boundary layer equa- 
t ions.  

W e  sha l l  consider)the - f low at moments of timo near the begin- 
ning of fusioa3We thus estimate the film movement ae~ laminar and we 

s h a l l  neglect the i n e r t i a l  terms in the equation expressing the law 
of the quantity of motion. We s h a l l  neglect in the equation of energy 
the heat from the work of f r i c t ion  forces  and the deceleration tempe- 
rature Wil l  be estimated t o  be approximately equal t o  the thermodynamia 
one . 

--.I 

I n  the system of coordinates, l inked with the body surface at 

i n  the depth of the body), the equations of motion w i l l  
the time t = 0 ( x  being counted along t h i s  surface and 3 along the 
normal t o  i t  
take the form 

* XESTATSIONARNOYE 0PLAvLE;NIPE TEZ POD DEXSWIPEM AERODINAMICHJZXOGO 
NAGREVA. 



. ..- 

2. 

where u, u' are the velocity componente; T is the temperature; X is 
the component of ma68 forces in the direct ion of the axis x; p and A 
are respectively the viscosity and heat conductance f a c t o r s ;  e is 
the heat capacity; Q is  the density; p is the pressure. W e  consider 

X, p and consequently ax as well known functions of x; 9 ,  c and 1 
are considered constantr 

dp 

I n i t i a l  conditions : 
at [=O ti L?. T =  Tu, ym;= 0. (1 04) 

Boundary conditions : 

qw and T, are the  thermal flow and f r ic t ion .  m e  quant i t ies  with the 
index ,,w" r e fe r  t o  the surface of the l i qu id  film. 

I n  the absence of vaporization and of heterogenous reactions, 
the surface of the l iqu id  film is determined by the equation 

For a semi-infinite body made of material  devoid of a clearly-expressed 
me l t ing  point, w e  have the conditions 

Most of the researchers ( [l], [2], E33 and others) iPrpoee fo r  
a semi-infinite body made of glass-like material the following condi- 
t ion  inetead of (1.8) : 

Such formulation of the problem is incorrect,  for, in tegra t ing  the equa- 
tion ( L 2 )  under t h a t  condition, we a r r ive  a t  the i n t eg ra l  

cw 

which has a f i n i t e  value only in the case, when F 3  00 at T --..) T-. 



3. 

1 Such dispar i ty  of conditions (1.8 
and of the equation (1.2) is due to  the fac t ,  t ha t  gloss-like m a t e r i d  
reveal  e l a s t i c  propertiee at low temperatures, and the s t r e s s  teneor 
has a form d i s t inc t  from the stress tensor of a v b c o a s  fluid.  

correct at first sight, 

The accounting of t h i s  phenomenon is quite complex, and i t  ie 
thus appropriate, as WQB pointed out in t4J9 t o  introduce a conditional 
"point of fwsion" - 'Em, approximately determining i t  QS such, at which 
the elastic properties of the material  become noticeable. The onthore, 
ee t t i ng  up the conditions (1.8 1, are anyhow prac t ica l ly  compelled 
t o  e i the r  take the f i n i t e  limits of integration, which oorrespona 
choice of T,,,, or  t o  limit themeelves i n  selecting Too, a6 is done by 
Setton C 1  J who takes T,= 0' IC. 

1 

t o  

2, TRANSITION Tb LAGRANGE VARIABLES. 

The solution of the problem formulated A6 made more complex 
by the fact tha t  the boundary conditione are assigned on a mobile cur- 
face, whose posit ion and ehape are not bown beforehand. In  commotion 
with t h i g a  t rans i t ion  t o  Lngrange variables offer8 in t e re s t ,  sine0 
t he i r  boundary w i l l  be fixed. 

We s h a l l  integrate  the equation (1.2) over j t  

and we s h a l l  then pass t o  Lagrange variables J , q ,  t ,  l inked with the 
l i qu id  par t ic lee ,  i, e. we sha l l  observe the var ia t ion of hydrodynPric 
quant i t ies  i n  the pa r t i c l e  ( 8ee the diagram Fig. 1, next page). Then 

X=X(E, '1. C). Y=Y(€ t  ?. 0. 

I n  order t o  f ind  I and y as functions eX j > % ,  b , we have the equations 

with the i n i t i a l  conditions: 

at r = O  x =x,, (6, 7). Y =yo <e. Q. (2.3) 



I I ? . 
~ 

4. 

The se lec t ion  of XOG. q) and yo(€. 7) is up t o  us; in t he  par t icu lar  case 
w e  may have t F O  x=E. Y = +  

In order t o  pass t o  variables J i q , t  in the equations (2.1) (1.3)* we 
shall make use of the formulas: 

a a d d  -_- 
at.- d t  + K a y  + V & *  

A t  moments of t h e  near t h e  beginning of fusion, and a t  appropriate choice 

of xo, yo ,  
in the boundary layer  

OY we may estimate !!5 and - 6f one order, and since we have dl a 

d T  d l  dy Similarly -_-- 
d r l - d y  d l '  

Fassing t o  Lagrange variables i n  the equation (2.1) arld inte- 
gra t ing  i t  over T\ , we s h a l l  have 

(3.4) 

The continuity equation in Lagrange var iables  has the form 

Different ia t ing t h i s  equation i n  time and u t i l i z i n g  (2.21, we obtain 

Assuming t h a t  dx and 22 are  of one order, w e  may neglect the term 
ati *I 
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In such case we sha l l  obtain from the last equation by integrat ing over 

dr;. 

The equation (1.3) is transformed t o  the form 

The boundary conditions f o r  T a r e :  
d T  dY y,,(E. 7 , ) = 0  1 - -  =- 9. -- d*, dr, on the curve 

1 and on the curve y , , (€ ,  = O  T = T ,  

Thus the problem has been reduced t o  the solution of equationo 
(2.2), (2.4), (2.5) and (2.6). The equation ( 2 . 6 )  is reeolved by the 
network method on l i n e s  5 = const. The integral6 (2.4) and (2.5) are 

computed over the time f o r  each step,  and then froa the equation6 (2.2) 
x(5 .  .r,. t ) .  y(E. q. t )  are  found in the following moment of time. Note tba t  by 
the select ion of x0t& Y o ( L  11 , we may succeed In obtaining t h a t  t o  a 
uniform ne t  i n  coordinate8 
correspond in the region of great temperature gradient6 with a mall etep, 

{ , 7 a nonuniform ne t  in aootdinater x, y 
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